Утверждена Приказом №1 от «04» сентября 2025 г. Генерального директора ООО «ЭКСПЕРТБАУ» /Муляр А.Д.

Программа профессионального обучения по профессии 16045 «Оператор станков с программным управлением»

Срок реализации программы: 56 часов. Уровень квалификации — 3 разряд.

СОДЕРЖАНИЕ

Наименование раздела	Страница
1. Пояснительная записка	3
1. Квалификационные характеристики профессиональной деятельности	4
«Оператор станков с программным управлением»	
3. Учебный план	20
4. Календарный учебный график	22
5. Рабочая программа	25
6. Методические материалы	32
7. Оценка качества освоения программы	34
8. Условия реализации программы	39
9. Организационно-педагогические условия реализации программы	40

1. ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

1.1. Направленность программы

Программа профессионального обучения направлена на подготовку квалифицированных рабочих по профессии «Оператор станков с программным управлением» (код 16045, 3 разряд). Программа охватывает ключевые аспекты работы на фрезерных станках с ЧПУ, включая настройку оборудования, чтение управляющих программ, контроль качества обработки деталей и соблюдение техники безопасности. Программа разработана в соответствии с профессиональным стандартом № 431н от 19.06.2011 и ЕТКС (выпуск № 1).

1.1. Актуальность программы

Актуальность программы обусловлена высоким спросом на специалистов в области металлообработки и машиностроения. Современные производства активно внедряют станки с ЧПУ, что требует от операторов не только практических навыков, но и понимания основ программирования, метрологии и норм охраны труда.

Дистанционный формат обучения позволяет осваивать профессию без отрыва от работы, что особенно важно для слушателей из регионов с ограниченным доступом к очным курсам.

1.3. Новизна программы

Новизна программы заключается в:

- комплексном подходе к изучению материала;
- адаптации под дистанционный формат;
- учете последних изменений в профессиональных стандартах (Приказ Минтруда от 19.06.2011 г. №431н).

1.4. Адресат программы

К освоению программы допускаются лица, имеющие среднее общее образование и профессиональное обучение — программы профессиональной подготовки по профессиям рабочих, должностям служащих, программы переподготовки рабочих, служащих.

1.5. Объем и срок реализации программы

Срок освоения программы составляет 56 академических часов. Общая продолжительность программы - 3 месяца. 1 академический час составляет 45 минут.

1.6. Цель и задачи программы

Целью реализации программы является формирование у обучающихся профессиональных компетенций для работы оператором фрезерных станков с ЧПУ 3 разряда в соответствии с требованиями ЕТКС.

Достижение поставленной цели осуществляется решением следующих задач:

- Изучить устройство и принципы работы фрезерных станков с ЧПУ.
- Освоить чтение и корректировку управляющих программ (G-код по стандарту ISO 6983).
- Научиться настраивать оборудование и контролировать качество обработки с использованием измерительных инструментов (штангенциркуль, микрометр).
- Отработать нормы безопасности в соответствии с ГОСТ 11.0.003-1015.

1.7. Условия реализации программы

Программа реализуется в заочной форме полностью с применением дистанционных технологий. Форма занятий - онлайн-лекции в zoom, текстовый материал, практические задания в форме тестирования, поддержка преподавателя, чат с преподавателем.

Основные принципы реализации программы:

• Последовательность прохождения тем по принципу «от общего к частному».

• Проверка полученных знаний со стороны преподавателя и обратная связь.

Порядок реализации программы:

- Реализация программы проходит на электронной платформе в форме онлайнлекций (прямых эфиров) и текстового материала.
 - Каждый урок проходит в режиме онлайн-лекций (прямых эфиров).
 - Предусмотрены практические задания в форме тестирования в конце обучения.
- Преподаватель проводит онлайн-лекции и дает обратную связь обучающимся посредством использования специализированных сервисов, средств обмена информацией через образовательную платформу.

Структура обучения:

- 1) Вводный модуль знакомство
- 2) Теоретическая часть 8 модулей 35 уроков (онлайн-лекции и текстовый материал)
- 3) Практическая часть тестирование
- 4) Промежуточный контроль после каждого модуля устные ответы на вопросы
- 5) Итоговая аттестация квалификационный экзамен

1.8. Планируемые результаты обучения

Планируемыми результатами обучения являются:

- Умение настраивать и обслуживать фрезерные станки с ЧПУ.
- Навыки чтения и корректировки управляющих программ.
- Контроль качества обработки деталей с допустимой погрешностью ± 0.05 мм.
- Соблюдение норм охраны труда и промышленной безопасности.

1.9. Нормативные документы

- 1. Федеральный закон Российской Федерации от 19 декабря 2011 г. № 173-ФЗ «Об образовании в Российской Федерации» (далее ФЗ № 173);
- 2. Приказ Министерства образования и науки Российской Федерации (Минобрнауки России) от 18 апреля 2013 г. № 191);
 - 3. Письмо Минобрнауки России от 11.04.2015 № ВК-1031/06;
- 4. Профессиональный стандарт «Оператор металлорежущих станков с числовым программным управлением», утвержденный приказом Министерства труда и социальной защиты Российской Федерации от 19.06.2011 г. №431н, зарегистрирован Министерством юстиции Российской Федерации 13.07.2011 г. рег. №64365;
- 5. Единый тарифно-квалификационный справочник работ и профессий рабочих (ЕТКС), выпуск № 1 (раздел «Металлообработка»);
 - 6. Трудовой кодекс Российской Федерации от 30 декабря 2001 г. № 197-ФЗ;
- 7. Постановление Правительства Российской Федерации от 11 января 2013 г. № 13 «О правилах разработки, утверждения и применения профессиональных стандартов»;
 - 8. Локальные нормативные акты ООО "ЭКСПЕРТБАУ".

1. КВАЛИФИКАЦИОННЫЕ ХАРАКТЕРИСТИКИ ПРОФЕССИОНАЛЬНОЙ ДЕЯТЕЛЬНОСТИ

Выписка из профессионального стандарта «Оператор металлорежущих станков с числовым программным управлением» (утвержденный приказом Министерства труда и социальной защиты Российской Федерации от 19.06.2011 №431н)

Обобщенные трудовые функции		Трудовые функции			
Код	Наименование	Уровень квалификац ии	Наименование	Код	Уровень (подуровень) квалификации
A	Изготовление простых деталей типа тел вращения на токарных универсальных станках с ЧПУ	1	Обработка заготовки простой детали типа тела вращения с точностью размеров по 11 - 14му квалитету на токарном универсальном станке с ЧПУ Контроль параметров простой детали типа тела вращения с точностью размеров по 11 - 14му квалитету, изготовленной на токарном универсальном станке с ЧПУ		1
В	Изготовление простых деталей не типа тел вращения на универсальных сверлильных, фрезерных или расточных станках с ЧПУ	1	Обработка заготовки простой детали не типа тела вращения с точностью размеров по 11 - 14му квалитету на сверлильном, фрезерном или расточном станке с ЧПУ Контроль параметров простой детали не типа тела вращения с точностью размеров по 11 - 14му квалитету, изготовленной на универсальном сверлильном, фрезерном или расточном станке с ЧПУ		1
C	Изготовление деталей средней сложности типа тел вращения на токарных станках с ЧПУ с многопозиционной револьверной головкой	3	Обработка заготовки детали средней сложности типа тела вращения с точностью размеров до 8-го квалитета на токарном станке с ЧПУ с многопозиционной револьверной головкой Контроль параметров детали средней сложности типа тела вращения с точностью размеров до 8-го квалитета, изготовленной на токарном станке с ЧПУ с многопозиционной револьверной головкой	C/01.3	3

D	Изготовление деталей средней сложности не типа тел вращения на 3-координатных сверлильнофрезерно-расточных обрабатывающих центрах с ЧПУ	Обработка заготовки детали средней сложности не типа тела вращения с точностью размеров до 8-го квалитета на 3-координатном сверлильнофрезернорасточном обрабатывающем центре с ЧПУ	D/01.3	3
		Контроль параметров детали средней сложности не типа тела вращения с точностью размеров до 8-го квалитета, изготовленной на 3-координатном сверлильнофрезерно-расточном обрабатывающем центре с ЧПУ	D/01.3	3

1.1. Трудовая функция — В/01.1 Обработка заготовки простой детали не типа тела вращения с точностью размеров по 11-14-му квалитету на сверлильном, фрезерном или расточном станке с ЧПУ

Трудовые действия	Анализ технологической и конструкторской документации на изготовление простых деталей не типа тел вращения на универсальном сверлильном, фрезерном или расточном станке с ЧПУ
	Проверка технологической оснастки для изготовления простой детали не типа тела вращения на универсальном сверлильном, фрезерном или расточном станке с ЧПУ
	Установка заготовки простой детали не типа тела вращения в универсальных приспособлениях универсального сверлильного, фрезерного или расточного станка с ЧПУ
	Запуск универсального сверлильного, фрезерного или расточного станка с ЧПУ для изготовления простой детали не типа тела вращения
	Запуск управляющей программы для обработки заготовки простой детали не типа тела вращения на универсальном сверлильном, фрезерном или расточном станке с ЧПУ
	Контроль состояния режущих инструментов и (или) режущих пластин для изготовления простой детали не типа тела вращения на универсальном сверлильном, фрезерном или расточном станке с ЧПУ
	Контроль процесса изготовления простой детали не типа тела вращения на универсальном сверлильном, фрезерном или расточном станке с ЧПУ
Необходимые умения	Применять технологическую и конструкторскую документацию на изготовление простой детали не типа тела вращения на универсальном сверлильном, фрезерном или расточном станке с ЧПУ
	Устанавливать заготовку для изготовления простой детали не типа тела вращения в приспособление на столе универсального сверлильного, фрезерного или расточного станка с ЧПУ

Контролировать базирование и закрепление заготовки простой детали не типа тела вращения в универсальном приспособлении на универсальном сверлильном, фрезерном или расточном станке с ЧПУ

Проверять надежность закрепления заготовки простых деталей не типа тел вращения в универсальных приспособлениях и прилегание заготовки к установочным поверхностям приспособления универсального сверлильного, фрезерного или расточного станка с ЧПУ

Запускать универсальный сверлильный, фрезерный или расточной станок с ЧПУ

Читать управляющую программу для обработки заготовки простой детали не типа тела вращения на универсальном сверлильном, фрезерном или расточном станке с ЧПУ

Запускать управляющую программу для обработки заготовки простой детали не типа тела вращения на универсальном сверлильном, фрезерном или расточном станке с $4\Pi Y$

Выполнять процесс обработки заготовки простой детали на универсальном сверлильном, фрезерном или расточном станке с ЧПУ

Контролировать визуально процесс обработки заготовки простой детали не типа тела вращения на универсальном сверлильном, фрезерном или расточном станке с ЧПУ

Контролировать состояние режущих инструментов и (или) режущих пластин для изготовления простой детали не типа тела вращения на универсальном сверлильном, фрезерном или расточном станке с ЧПУ

Проверять наличие смазочно-охлаждающей жидкости в баке универсального сверлильного, фрезерного или расточного станка с ЧПУ

Необходимые знания

Правила чтения технологической и конструкторской документации

Условное обозначение технологических баз, используемое в технологической документации

Устройство, основные узлы, принципы работы и правила эксплуатации универсальных приспособлений, используемых для установки и изготовления простых деталей на универсальных сверлильных, фрезерных, расточных станках с ЧПУ

Способы контроля надежности крепления заготовок в приспособлениях и прилегания заготовок к установочным поверхностям

Основные механизмы и узлы универсальных сверлильных, фрезерных, расточных станков с ЧПУ и принципы их работы

Назначение органов управления универсальных сверлильных, фрезерных, расточных станков с ЧПУ

Интерфейс устройства ЧПУ универсальных сверлильных, фрезерных, расточных станков

Назначение и правила применения режущих инструментов на сверлильных, фрезерных, расточных станках с ЧПУ

Правила ухода за универсальными сверлильными, фрезерными, расточными станками с ЧПУ, их технической эксплуатации

G-коды

Основные команды управления универсальными сверлильными, фрезерными, расточными станками с ЧПУ

Классификация, маркировка и физико-механические свойства конструкционных и инструментальных материалов	
Требования охраны труда при работе со смазочно-охлаждающими жидкостями	
Требования охраны труда, пожарной, промышленной, экологической и электробезопасности	

1.1. Трудовая функция — В/01.1 Контроль параметров простой детали не типа тела вращения с точностью размеров по 11-14-му квалитету, изготовленной на универсальном сверлильном, фрезерном или расточном станке с ЧПУ

Трудовые действия	Визуальное определение дефектов обработанных поверхностей простой детали не типа тела вращения, изготовленной на универсальном сверлильном, фрезерном или расточном станке с ЧПУ
	Контроль линейных размеров простой детали не типа тела вращения, изготовленной на универсальном сверлильном, фрезерном или расточном станке с ЧПУ, по 11 - 14-му квалитету
	Контроль точности формы и взаимного расположения поверхностей простой детали не типа тела вращения, изготовленной на универсальном сверлильном, фрезерном или расточном станке с ЧПУ, с точностью до 14-й степени точности
	Контроль шероховатости поверхностей простой детали не типа тела вращения, изготовленной на универсальном сверлильном, фрезерном или расточном станке с ЧПУ, по параметру Ra 6,311,5
Необходимые умения	Выявлять визуально дефекты обработанных поверхностей простой детали не типа тела вращения, изготовленной на универсальном сверлильном, фрезерном или расточном станке с ЧПУ
	Применять универсальные контрольно-измерительные приборы и инструменты для измерения и контроля линейных размеров простой детали не типа тела вращения, изготовленной на универсальном сверлильном, фрезерном или расточном станке с ЧПУ, с точностью до 11 - 14-го квалитета
	Контролировать шероховатость поверхностей простой детали не типа тела вращения, изготовленной на универсальном сверлильном, фрезерном или расточном станке с ЧПУ, визуально-тактильными методами
	Применять универсальные контрольно-измерительные приборы и инструменты для измерения и контроля точности формы и взаимного расположения обработанных поверхностей простой детали не типа тела вращения, изготовленной на универсальном сверлильном, фрезерном или расточном станке с ЧПУ, с точностью до 14-й степени точности
	Проверять соответствие измеренных параметров простой детали не типа тела вращения, изготовленной на универсальном сверлильном, фрезерном или расточном станке с ЧПУ, чертежу
Необходимые	Правила чтения технологической и конструкторской документации
знания	Обозначения на рабочих чертежах деталей допусков и посадок типовых соединений, допусков форм и взаимного расположения поверхностей, параметров шероховатости поверхностей

Система допусков и посадок, степеней точности; квалитеты и параметры шероховатости

Виды дефектов поверхностей и способы их предупреждения и устранения

Виды, конструкции, назначение, возможности и правила использования контрольно-измерительных инструментов для измерения и контроля шероховатости по параметру Ra 6,3...11,5

Виды, конструкции, назначение, возможности и правила использования контрольно-измерительных инструментов для измерения и контроля точности формы и взаимного расположения с точностью до 14-й степени точности

Виды, конструкции, назначение, возможности и правила использования контрольно-измерительных инструментов для измерения и контроля линейных размеров по 11 - 14-му квалитету

Машиностроительное черчение в объеме, необходимом для выполнения работы

Требования охраны труда, пожарной, промышленной, экологической и электробезопасности

1.3. Трудовая функция — C/01.3 Обработка заготовки детали средней сложности типа тела вращения с точностью размеров до 8-го квалитета на токарном станке с ЧПУ с многопозиционной револьверной головкой

Трудовые **действия**

Анализ технологической и конструкторской документации на изготовление детали средней сложности типа тела вращения на токарном станке с ЧПУ с многопозиционной револьверной головкой

Подготовка технологической оснастки для изготовления детали средней сложности типа тела вращения на токарном станке с ЧПУ с многопозиционной револьверной головкой

Установка заготовки детали средней сложности типа тела вращения в универсальных и специальных приспособлениях токарного станка с ЧПУ с многопозиционной револьверной головкой

Запуск токарного станка с ЧПУ с многопозиционной револьверной головкой

Запуск управляющей программы для обработки заготовки детали средней сложности типа тела вращения на токарном станке с ЧПУ с многопозиционной револьверной головкой

Контроль работы основных механизмов и системы программного управления токарного станка с ЧПУ с многопозиционной револьверной головкой

Контроль состояния режущих инструментов и (или) режущих пластин для изготовления детали средней сложности на токарном станке с ЧПУ с многопозиционной револьверной головкой

Контроль процесса изготовления детали средней сложности типа тела вращения на токарном станке с ЧПУ с многопозиционной револьверной головкой

Необходимые умения

Применять технологическую и конструкторскую документацию на изготовление детали средней сложности типа тела вращения на токарном станке с ЧПУ с многопозиционной револьверной головкой

Определять технологические базы, установленные технологической документацией на изготовление детали средней сложности типа тела вращения, на токарном станке с ЧПУ с многопозиционной револьверной головкой

Анализировать схемы базирования заготовки для изготовления детали средней сложности типа тела вращения на токарном станке с ЧПУ с многопозиционной револьверной головкой

Устанавливать заготовку для изготовления детали средней сложности типа тела вращения в приспособление токарного станка с ЧПУ с многопозиционной револьверной головкой

Контролировать базирование и закрепление заготовки детали средней сложности типа тела вращения в универсальных приспособлениях на токарном станке с ЧПУ с многопозиционной револьверной головкой

Проверять надежность закрепления заготовки детали средней сложности типа тела вращения в приспособлениях и прилегание заготовки к установочным поверхностям приспособления на станке с ЧПУ с многопозиционной револьверной головкой

Запускать токарный станок с многопозиционной револьверной головкой с устройства ЧПУ

Запускать управляющую программу для обработки заготовки детали средней сложности типа тела вращения на токарном станке с многопозиционной револьверной головкой с устройства ЧПУ

Выполнять процесс обработки заготовки деталей средней сложности на токарном станке с многопозиционной револьверной головкой

Выбирать управляющую программу из памяти устройства ЧПУ токарного станка с многопозиционной револьверной головкой

Читать управляющую программу для обработки заготовки детали средней сложности типа тела вращения на токарном станке с многопозиционной револьверной головкой

Выполнять процесс обработки заготовки детали средней сложности типа тела вращения на токарном станке с ЧПУ с многопозиционной револьверной головкой

Контролировать процесс отработки управляющей программы обработки заготовки детали средней сложности типа тела вращения по экрану устройства ЧПУ токарного станка с многопозиционной револьверной головкой

Контролировать состояние режущих инструментов и (или) режущих пластин для изготовления детали средней сложности типа тела вращения на токарном станке с многопозиционной револьверной головкой

Проверять исправность элементов управления оборудования и кнопок аварийной остановки токарного станка с ЧПУ с многопозиционной револьверной головкой

	Проверять наличие смазочно-охлаждающей жидкости в баке токарного станка с ЧПУ с многопозиционной револьверной головкой
	Регулировать подачу смазочно-охлаждающей жидкости с устройства ЧПУ токарного станка с многопозиционной револьверной головкой
Необходимые знания	Правила чтения технической документации
Знания	Условное обозначение технологических баз, используемое в технологической документации
	Классификация, устройство, основные узлы, принципы работы и правила эксплуатации универсальных и специальных приспособлений, используемых для установки заготовки детали средней сложности типа тела вращения на токарном станке с многопозиционной револьверной головкой
	Основные механизмы и узлы токарных станков с ЧПУ с многопозиционной револьверной головкой и принципы их работы
	Назначение органов управления токарных станков с ЧПУ с многопозиционной револьверной головкой
	Правила ухода за токарным станком с ЧПУ с многопозиционной револьверной головкой и его технической эксплуатации
	Устройство и виды револьверных головок
	Правила настройки, регулирования универсальных и специальных приспособлений
	Способы контроля надежности крепления заготовок в приспособлениях и прилегания заготовок к установочным поверхностям
	Устройство и принцип работы однотипных токарных станков с ЧПУ с многопозиционной револьверной головкой
	Интерфейсы устройства ЧПУ токарных станков с ЧПУ с многопозиционной револьверной головкой
	G-коды
	Основные команды управления токарным станком с ЧПУ с многопозиционной револьверной головкой
	Классификация, маркировка и физико-механические свойства конструкционных и инструментальных материалов
	Назначение и правила применения режущих инструментов на токарных станках с ЧПУ с многопозиционной револьверной головкой

Требования охраны труда при работе со смазочно-охлаждающими жидкостями	
Требования охраны труда, пожарной, промышленной, экологической и электробезопасности	

1.4. Трудовая функция — C/01.3 Контроль параметров детали средней сложности типа тела вращения с точностью размеров до 8-го квалитета, изготовленной на токарном станке с ЧПУ с многопозиционной револьверной головкой

Tr.					
Трудовые действия	Визуальное определение дефектов обработанных поверхностей детали средней сложности типа тела вращения, изготовленной на токарном станке с ЧПУ с многопозиционной револьверной головкой				
	Контроль линейных размеров детали средней сложности типа тела вращения, изготовленной на токарном станке с ЧПУ с многопозиционной револьверной головкой, до 8-го квалитета				
	Контроль точности формы и взаимного расположения поверхностей детали средней сложности типа тела вращения, изготовленной на токарном станке с ЧПУ с многопозиционной револьверной головкой, с точностью до 9-й степени точности				
	Контроль шероховатости обработанных поверхностей детали средней сложности типа тела вращения, изготовленной на токарном станке с многопозиционной револьверной головкой, по параметру Ra 3,16,3				
	Контроль угловых размеров обработанных поверхностей детали средней сложности типа тела вращения, изготовленной на токарном станке с многопозиционной револьверной головкой, до 9-й степени точности				
Необходимые умения	Выявлять визуально дефекты обработанных поверхностей детали средней сложности типа тела вращения, изготовленной на токарном станке с ЧПУ с многопозиционной револьверной головкой				
	Применять универсальные контрольно-измерительные приборы и инструменты для измерения и контроля линейных размеров детали средней сложности типа тела вращения, изготовленной на токарном станке с многопозиционной револьверной головкой, с точностью до 8-го квалитета				
	Применять универсальные контрольно-измерительные инструменты и приборы для измерения и контроля шероховатости обработанных поверхностей детали средней сложности типа тела вращения, изготовленной на токарном станке с многопозиционной револьверной головкой, по параметру Ra 3,16,3				
	Применять универсальные и специальные контрольно-измерительные приборы и инструменты для измерения и контроля точности формы и взаимного расположения обработанных поверхностей детали средней сложности типа тела вращения, изготовленной на токарном станке с многопозиционной револьверной головкой, до 9-й степени точности				

Применять универсальные, специальные контрольно-измерительные приборы и инструменты для измерения и контроля угловых размеров детали средней сложности типа тела вращения, изготовленной на токарном станке с многопозиционной револьверной головкой, с точностью до 9-й степени точности Применять шаблоны для контроля точности внутренних поверхностей детали средней сложности типа тела вращения, изготовленной на токарном станке с многопозиционной револьверной головкой, с точностью до 9-й степени точности Проверять соответствие измеренных параметров детали средней сложности типа тела вращения, изготовленной на токарном станке с ЧПУ с многопозиционной револьверной головкой, чертежу Необходимые Правила чтения технологической и конструкторской документации знания Обозначения на рабочих чертежах деталей допусков и посадок типовых соединений, допусков форм и взаимного расположения поверхностей, параметров шероховатости поверхностей Система допусков и посадок, степеней точности; квалитеты и параметры шероховатости Виды дефектов поверхностей и способы их предупреждения и устранения Виды, конструкции, назначение, возможности и правила использования контрольно-измерительных инструментов для измерения и контроля шероховатости по параметру Ra 3,1...6,3 Виды, конструкции, назначение, возможности и правила использования контрольно-измерительных инструментов для измерения и контроля формы и взаимного расположения до 9-й степени точности Виды, конструкции, назначение, возможности и правила использования контрольно-измерительных инструментов для измерения и контроля линейных размеров до 8-го квалитета Виды, конструкции, назначение, возможности и правила использования контрольно-измерительных инструментов для измерения и контроля угловых размеров до 9-й степени точности Правила работы с шаблонами и мерами для контроля формы обработанной поверхности с точностью до 9-й степени точности Машиностроительное черчение в объеме, необходимом для выполнения работы

1.5. Трудовая функция — D/01.3 Обработка заготовки детали средней сложности не типа тела вращения с точностью размеров до 8-го квалитета на 3-координатном сверлильно-фрезерно-расточном обрабатывающем центре с ЧПУ

электробезопасности

Трудовые	Анализ технологической и конструкторской документации на изготовление
действия	детали средней сложности не типа тела вращения на 3-координатном сверлильно-
	фрезерно-расточном обрабатывающем центре с ЧПУ

Требования охраны труда, пожарной, промышленной, экологической и

Подготовка технологической оснастки для изготовления детали средней сложности не типа тела вращения на 3-координатном сверлильнофрезернорасточном обрабатывающем центре с ЧПУ

Установка заготовки детали средней сложности не типа тела вращения в универсальных и специальных приспособлениях 3-координатного сверлильнофрезерно-расточного обрабатывающего центра с ЧПУ

Запуск 3-координатного сверлильно-фрезерно-расточного обрабатывающего центра с ЧПУ

Запуск управляющей программы для обработки заготовки детали средней сложности не типа тела вращения на 3-координатном сверлильнофрезернорасточном обрабатывающем центре с ЧПУ

Контроль работы основных механизмов и системы программного управления 3-координатного сверлильно-фрезерно-расточного обрабатывающего центра с ЧПУ

Контроль состояния режущих инструментов и (или) режущих пластин для изготовления детали средней сложности не типа тела вращения на 3-координатном сверлильно-фрезерно-расточном обрабатывающем центре с ЧПУ

Контроль процесса изготовления детали средней сложности не типа тела вращения на 3-координатном сверлильно-фрезерно-расточном обрабатывающем центре с ЧПУ

Необходимые умения

Применять технологическую и конструкторскую документацию на изготовление детали средней сложности не типа тела вращения на 3-координатном сверлильнофрезерно-расточном обрабатывающем центре с ЧПУ

Определять технологические базы, установленные технологической документацией на изготовление детали средней сложности не типа тела вращения, на 3-координатном сверлильно-фрезерно-расточном обрабатывающем центре с ЧПУ

Анализировать схемы базирования заготовки детали средней сложности не типа тела вращения на 3-координатном сверлильно-фрезернорасточном обрабатывающем центре с ЧПУ

Устанавливать заготовку детали средней сложности не типа тела вращения в приспособление 3-координатного сверлильно-фрезерно-расточного обрабатывающего центра с ЧПУ

Контролировать базирование и закрепление заготовки детали средней сложности не типа тела вращения в универсальных и специальных приспособлениях 3-координатного сверлильно-фрезерно-расточного обрабатывающего центра с ЧПУ

Проверять надежность закрепления заготовки детали средней сложности не типа тела вращения в приспособлении и прилегание заготовок к установочным поверхностям приспособления на 3-координатном сверлильно-фрезернорасточном обрабатывающем центре с ЧПУ

Запускать 3-координатный сверлильно-фрезерно-расточной обрабатывающий центр с пульта управления устройства ЧПУ

Запускать управляющую программу для обработки заготовки детали средней сложности не типа тела вращения на 3-координатном сверлильно-фрезернорасточном обрабатывающем центре с ЧПУ

Выбирать управляющую программу из памяти устройства ЧПУ 3-координатного сверлильно-фрезерно-расточного обрабатывающего центра с ЧПУ

Читать управляющую программу для обработки заготовки детали средней сложности не типа тела вращения

Выполнять процесс обработки заготовки детали средней сложности не типа тела вращения на 3-координатном сверлильно-фрезерно-расточном обрабатывающем центре с ЧПУ

Контролировать процесс отработки управляющей программы обработки заготовки детали средней сложности не типа тела вращения по экрану устройства ЧПУ

Контролировать состояние режущих инструментов и (или) режущих пластин для изготовления детали средней сложности не типа тела вращения на 3-координатном сверлильно-фрезерно-расточном обрабатывающем центре с ЧПУ

Проверять исправность элементов управления оборудования и кнопок аварийной остановки 3-координатного сверлильно-фрезерно-расточного обрабатывающего центра с ЧПУ

Проверять наличие смазочно-охлаждающей жидкости в баке 3-координатного сверлильно-фрезерно-расточного обрабатывающего центра с ЧПУ

Регулировать подачу смазочно-охлаждающей жидкости с устройства ЧПУ 3-координатного сверлильно-фрезерно-расточного обрабатывающего центра

Необходимые знания

Правила чтения технической и конструкторской документации

Условное обозначение технологических баз, используемое в технологической документации

Классификация, устройство, основные узлы, принципы работы и правила эксплуатации универсальных и специальных приспособлений, используемых для установки и изготовления детали средней сложности не типа тела вращения на 3-координатном сверлильно-фрезерно-расточном обрабатывающем центре

Способы контроля надежности крепления заготовок в приспособлениях и прилегания заготовок к установочным поверхностям

Основные механизмы и узлы сверлильно-фрезерно-расточных станков с ЧПУ и принципы их работы

Назначение органов управления сверлильно-фрезерно-расточных обрабатывающих центров с ЧПУ

Интерфейс стойки системы управления ЧПУ 3-координатного сверлильнофрезерно-расточного станка

Правила ухода за сверлильно-фрезерно-расточными станками, их технической эксплуатации

G-коды

Основные команды управления 3-координатными сверлильно-фрезернорасточными станками с ЧПУ

Классификация, маркировка и физико-механические свойства конструкционных и инструментальных материалов

Назначение и правила применения режущих инструментов на сверлильнофрезерно-расточных станках с ЧПУ

Требования охраны труда при работе со смазочно-охлаждающими жидкостями

Требования охраны труда, пожарной, промышленной, экологической и электробезопасности

1.6. Трудовая функция — D/01.3 Контроль параметров детали средней сложности не типа тела вращения с точностью размеров до 8-го квалитета, изготовленной на 3-координатном сверлильно-фрезерно-расточном обрабатывающем центре с ЧПУ

Трудовые действия

Визуальное определение дефектов обработанных поверхностей детали средней сложности не типа тела вращения, изготовленной на 3-координатном сверлильнофрезерно-расточном обрабатывающем центре с ЧПУ

Контроль линейных размеров детали средней сложности не типа тела вращения, изготовленной на 3-координатном сверлильно-фрезернорасточном обрабатывающем центре с ЧПУ, до 8-го квалитета

Контроль точности формы и взаимного расположения поверхностей детали средней сложности не типа тела вращения, изготовленной на 3координатном сверлильно-фрезерно-расточном обрабатывающем центре с ЧПУ, с точностью до 9-й степени точности

Контроль шероховатости поверхностей детали средней сложности не типа тела вращения, изготовленной на 3-координатном сверлильнофрезерно-расточном обрабатывающем центре с ЧПУ, по параметру Ra 3,1...6,3

	Контроль угловых размеров обработанных поверхностей детали средней сложности не типа тела вращения, изготовленной на 3-координатном сверлильнофрезерно-расточном обрабатывающем центре с ЧПУ, до 9-й степени точности
Необходимые умения	Выявлять визуально дефекты обработанных поверхностей детали средней сложности не типа тела вращения, изготовленной на 3-координатном сверлильнофрезерно-расточном обрабатывающем центре с ЧПУ
	Применять универсальные контрольно-измерительные приборы и инструменты для измерения и контроля линейных размеров детали средней сложности не типа тела вращения, изготовленной на 3-координатном сверлильно-фрезернорасточном обрабатывающем центре с ЧПУ, с точностью до 8-го квалитета
	Применять универсальные контрольно-измерительные инструменты и приборы для измерения и контроля шероховатости поверхностей детали средней сложности не типа тела вращения, изготовленной на 3координатном сверлильнофрезерно-расточном обрабатывающем центре с ЧПУ, по параметру Ra 3,1 6,3
	Применять универсальные и специальные контрольно-измерительные приборы и инструменты для измерения и контроля точности формы и взаимного расположения обработанных поверхностей детали средней сложности не типа тела вращения, изготовленной на 3-координатном сверлильно-фрезернорасточном обрабатывающем центре с ЧПУ, до 9й степени точности
	Применять универсальные контрольно-измерительные приборы и инструменты для измерения и контроля угловых размеров детали средней сложности не типа тела вращения, изготовленной на 3-координатном сверлильно-фрезернорасточном обрабатывающем центре с ЧПУ, с точностью до 9-й степени точности
	Применять шаблоны для контроля точности внутренних поверхностей детали средней сложности не типа тела вращения, изготовленной на Зкоординатном сверлильно-фрезерно-расточном обрабатывающем центре с ЧПУ, с точностью до 9-й степени точности
	Проверять соответствие измеренных параметров детали средней сложности не типа тела вращения, изготовленной на 3-координатном сверлильно-фрезернорасточном обрабатывающем центре с ЧПУ, чертежу
Необходимые	Правила чтения технологической и конструкторской документации
знания	Обозначения на рабочих чертежах деталей допусков и посадок, допусков форм и взаимного расположения поверхностей, параметров шероховатости поверхностей
	Система допусков и посадок, степеней точности; квалитеты и параметры шероховатости
	Виды дефектов поверхностей и способы их предупреждения и устранения
	Виды, конструкции, назначение, возможности и правила использования контрольно-измерительных инструментов для измерения и контроля шероховатости по параметру Ra 3,16,3

Виды, конструкции, назначение, возможности и правила использования контрольно-измерительных инструментов для измерения и контроля точности формы и взаимного расположения до 9-й степени точности

Виды, конструкции, назначение, возможности и правила использования контрольно-измерительных инструментов для измерения и контроля линейных размеров до 8-го квалитета

Виды, конструкции, назначение, возможности и правила использования контрольно-измерительных инструментов для измерения и контроля угловых размеров до 9-й степени точности

Правила работы с шаблонами и мерами для контроля формы обработанной поверхности с точностью до 9-й степени точности

Машиностроительное черчение в объеме, необходимом для выполнения работы

Требования охраны труда, пожарной, промышленной, экологической и электробезопасности

3. УЧЕБНЫЙ ПЛАН

No॒	Наименование модуля,	Общая	Онлайн-	Длительность	Форма
занятия	тем, занятий	трудоемкость	лекции	промежуточной	контроля
				аттестации	1
Вводная часть		1 час	1 час		
Урок 1. О	бщее ознакомление с	1 час	1 час		
	ей. Введение в				
специальн					
Модуль 1	. Введение в				
оборудов	ание и виды обработки				
	ервое знакомство с	1 час	1 час		
оборудова	анием, стойками				
Урок 3. В	иды механической и	1 час	1 час		
немехани	ческой обработки				
Промежу	гочный контроль			2 часа	Зачет
Модуль 1	. Технология и работа с				
чертежам					
Урок 4. Т	еория резания на	1 час	1 час		
	м станке. Технология				
простого					
Урок 5. Д	орожная карта	1 час	1 час		
изготовле	ния конкретной детали				
	абота с чертежами. Чтение	1 час	1 час		
и анализ ((часть 1)				
Урок 7. Ра	абота с чертежами. Чтение	1 час	1 час		
и анализ (часть 1)					
Промежут	гочный контроль			2 часа	Зачет
Модуль 3	В. Оснастка, крепление,				
	инструмент				
Урок 8. К		1 час	1 час		
изделия/з	аготовки и оснастки в				
рабочей з	оне				
Урок 9. В	иды режущего	1 час	1 час		
инструме	нта (часть 1)				
	Виды режущего	1 час	1 час		
	нта (часть 1)				
	Виды режущего	1 час	1 час		
	нта (часть 3)				
-	Варианты фиксации	1 час	1 час		
	инструмента				
Урок 13. l	Виды мерительного и	1 час	1 час		
	ного инструмента				
Промежу	гочный контроль			2 часа	Зачет
Модуль 4	I. Координаты, наладка,				
режимы					
Урок 14. (Система координат станка.	1 час	1 час		
Виды зану	уления				
Урок 15. l	Наладка изделия	1 час	1 час		
Урок 16. T	Геория обрабатываемых	1 час	1 час		
материало	ов (часть 1)				

Урок 17. Теория обрабатываемых	1 час	1 час		
материалов (часть 1)	1 4ac	1 4ac		
Урок 18. Режимы резания	1 час	1 час		
Урок 19. Компенсация инструмента	1 час	1 час		
Промежуточный контроль	1 acc	1 ac	2 часа	Зачет
Модуль 5. Программирование: G-			2 4aca	Jager
коды				
Урок 10. G-код (часть 1)	1 час	1 час		
Урок 11. G-код (часть 1)	1 час	1 час		
Урок 11. G-код (часть 3)	1 час	1 час		
Урок 13. G-код (часть 4)	1 час	1 час		
Промежуточный контроль		l .	2 часа	Зачет
Модуль 6. Практические циклы				
обработки				
Урок 14. Сверление	1 час	1 час		
Урок 15. Резьба (метчиком,	1 час	1 час		
резьбофрезой)				
Урок 16. Обработка изделия на	1 час	1 час		
станке по чертежу				
Промежуточный контроль	1	1	2 часа	Зачет
Модуль 7. Работа со стойками				
Siemens/Fanuc/Haas				
Урок 17. Обзор функционала стоек	1 час	1 час		
Урок 18. Работа с функциями (часть	1 час	1 час		
1)				
Урок 19. Работа с функциями (часть	1 час	1 час		
1)				
Урок 30. Работа с функциями (часть	1 час	1 час		
3)				
Урок 31. Операции	1 час	1 час		
программирования и черчение				
Урок 31. Разбор готовых УП.	1 час	1 час		
Внесение правок				
Урок 33. Создание собственной УП	1 час	1 час		
Промежуточный контроль	1		2 часа	Зачет
Модуль 8. Охрана труда и				
трудоустройство				
Урок 34. Общие вопросы охраны	1 час	1 час		
труда и техника безопасности				
Урок 35. Подготовка резюме	1 час	1 час		
Урок 36. Трудоустройство	1 час	1 час		
Промежуточный контроль			2 часа	Зачет
Практическая часть			2 часа	Зачет
Итоговый контроль			2 часа	Экзамен

Общая трудоемкость обучения – 56 академических часов.

4. КАЛЕНДАРНЫЙ УЧЕБНЫЙ ГРАФИК

N п/п и наименование	Кол-во часов	Форма контроля	Период обучения/день
Вводная часть	1 час	-	1-4 день
Урок 1. Общее ознакомление с профессией. Введение в специальность	1 час	-	4 день
Модуль 1. Введение в оборудование и виды обработки		-	5-13 день обучения
Урок 2. Первое знакомство с оборудованием, стойками	1 час	-	5 день обучения
Урок 3. Виды механической и немеханической обработки	1 час	-	9 день обучения
Промежуточный контроль	2 часа	Зачет	13 день обучения
Модуль 2. Технология и работа с чертежами		-	14-26 день обучения
Урок 4. Теория резания на фрезерном станке. Технология простого изделия	1 час	-	14 день обучения
Урок 5. Дорожная карта изготовления конкретной детали	1 час	-	16 день обучения
Урок 6. Работа с чертежами. Чтение и анализ (часть 1)	1 час	-	18 день обучения
Урок 7. Работа с чертежами. Чтение и анализ (часть 2)	1 час	-	20 день обучения
Промежуточный контроль	2 часа	Зачет	26 день обучения
Модуль 3. Оснастка, крепление, режущий инструмент		-	27-40 день обучения
Урок 8. Крепление изделия/заготовки и оснастки в рабочей зоне	1 час	-	27 день обучения
Урок 9. Виды режущего инструмента (часть 1)	1 час	-	29 день обучения
Урок 10. Виды режущего инструмента (часть 2)	1 час	-	30 день обучения
Урок 11. Виды режущего инструмента (часть 3)	1 час	-	32 день обучения

Урок 12. Варианты фиксации режущего	1 час	-	34 день обучения
инструмента			
Урок 13. Виды мерительного и контрольного инструмента	1 час	-	35 день обучения
Промежуточный контроль	2 часа	Зачет	40 день обучения
Модуль 4. Координаты, наладка, режимы		-	41-52 день обучения
Урок 14. Система координат станка. Виды зануления	1 час	-	41 день обучения
Урок 15. Наладка изделия	1 час	-	42 день обучения
Урок 16. Теория обрабатываемых материалов (часть 1)	1 час	-	44 день обучения
Урок 17. Теория обрабатываемых материалов (часть 2)	1 час	-	45 день обучения
Урок 18. Режимы резания	1 час	-	46 день обучения
Урок 19. Компенсация инструмента	1 час	-	48 день обучения
Промежуточный контроль	2 часа	Зачет	52 день обучения
Модуль 5. Программирование: G -коды		-	53-61 день обучения
Урок 20. G-код (часть 1)	1 час	-	53 день обучения
Урок 21. G-код (часть 2)	1 час	-	54 день обучения
Урок 22. G-код (часть 3)	1 час	-	55 день обучения
Урок 23. G-код (часть 4)	1 час	-	57 день обучения
Промежуточный контроль	2 часа	Зачет	61 день обучения
Модуль 6. Практические циклы обработки		-	62-71 день обучения
Урок 24. Сверление	1 час	-	62 день обучения
Урок 25. Резьба (метчиком, резьбофрезой)	1 час	-	64 день обучения

Урок 26. Обработка изделия на станке по чертежу	1 час	-	66 день обучения
Промежуточный контроль	2 часа	Зачет	71 день обучения
Модуль 7. Работа со стойками Siemens/Fanuc/Haas		-	72 день обучения
Урок 27. Обзор функционала стоек	1 час	-	73 день обучения
Урок 28. Работа с функциями (часть 1)	1 час	-	74 день обучения
Урок 29. Работа с функциями (часть 2)	1 час	-	75 день обучения
Урок 30. Работа с функциями (часть 3)	1 час	-	76 день обучения
Урок 31. Операции программирования и черчение	1 час	-	77 день обучения
Урок 32. Разбор готовых УП. Внесение правок	1 час	-	78 день обучения
Урок 33. Создание собственной УП	1 час	-	79 день обучения
Промежуточный контроль	2 часа	Зачет	81 день обучения
Модуль 8. Охрана труда и трудоустройство		-	82-89 день обучения
Урок 34. Общие вопросы охраны труда и техника безопасности	1 час	-	82 день обучени
Урок 35. Подготовка резюме	1 час	-	85 день обучения
Урок 36. Трудоустройство	1 час	-	87 день обучения
Промежуточный контроль	2 часа	Зачет	88 день обучения
Итоговый контроль	2 часа	Экзамен	90 день обучения
ИТОГО	56 часов		90 дней обучения

5. РАБОЧАЯ ПРОГРАММА

Вводный модуль

Урок 1. Общее ознакомление с профессией. Введение в специальность

В рамках этого модуля обучающиеся познакомятся с интерфейсом образовательной платформы и получат инструкции по организации обучения.

Модуль 1. Введение в оборудование и виды обработки

- Урок 1. Первое знакомство с оборудованием, стойками виды станков, цель назначения, основные принципы работы, обработка, работа со стойками.
- Урок 3. Виды механической и немеханической обработки виды механической и немеханической обработки на станках помимо фрезерной

Промежуточный контроль 2 часа

1. Зачет – устный ответ на вопросы

В результате данного модуля учащиеся научатся классифицировать станки с ЧПУ по типам и системам управления, определять технологические возможности различного оборудования, выбирать оптимальные методы обработки для типовых деталей.

Вопросы промежуточного контроля:

- 1. В чем основные отличия фрезерной и токарной обработки?
- 2. Какие факторы влияют на выбор метода обработки детали?
- 3. Опишите принцип работы одной из систем ЧПУ (на выбор).
- 4. Составьте технологическую последовательность обработки простой детали.

Модуль 1. Технология и работа с чертежами

- Урок 4. Теория резания на фрезерном станке. Технология простого изделия проработка технологии изготовления простого изделия, типы операций.
- Урок 5. Дорожная карта изготовления конкретной детали разбор «дорожной карты» изготовления конкретной детали
- Урок 6. Работа с чертежами. Чтение и анализ (часть 1) разбор основных требований чертежей, чтение и понимание чертежа
- Урок 7. Работа с чертежами. Чтение и анализ (часть 1) разбор основных требований чертежей, чтение и понимание чертежа

Промежуточный контроль 2 часа

1. Зачет – устные ответы на вопросы

В результате данного модуля учащиеся освоят чтение машиностроительных чертежей и разработку технологических маршрутов обработки.

Вопросы промежуточного контроля:

- 1. Как определить критичные допуски на чертеже?
- 2. Какие параметры влияют на выбор скорости резания?
- 3. Опишите алгоритм составления "дорожной карты" обработки
- 4. Как проверить комплектность технической документации?
- 5. Какие факторы учитываются при разработке технологического маршрута?

Модуль 3. Оснастка, крепление, режущий инструмент

- Урок 8. Крепление изделия/заготовки и оснастки в рабочей зоне разбор основных приспособлений и способы крепления
- Урок 9. Виды режущего инструмента (часть 1) основные типы инструмента для фрезерной обработки, виды обрабатываемого материала
- Урок 10. Виды режущего инструмента (часть 1) основные типы инструмента для фрезерной обработки, виды обрабатываемого материала
- Урок 11. Виды режущего инструмента (часть 3) основные типы инструмента для фрезерной обработки, виды обрабатываемого материала
- Урок 11. Варианты фиксации режущего инструмента основные типы инструмента для фрезерной обработки, виды обрабатываемого материала
- Урок 13. Виды мерительного и контрольного инструмента основные виды инструмента измерения и контроля, способы его использования

Промежуточный контроль 2 часа

1. Зачет – устные ответы на вопросы

В результате данного модуля учащиеся приобретут навыки подбора режущего инструмента и оснастки для разных материалов и операций.

Вопросы промежуточного контроля:

- 1. Как выбрать фрезу для обработки алюминия?
- 2. Какие факторы влияют на надежность крепления заготовки?
- 3. Опишите методику контроля износа инструмента
- 4. В чем преимущества гидравлических патронов перед механическими?
- 5. Как подобрать мерительный инструмент для контроля сложных поверхностей?

Модуль 4. Координаты, наладка, режимы

- Урок 14. Система координат станка. Виды зануления разбор пользовательских и машинных систем координат, а также зануления и способы работы с ними
- Урок 15. Наладка изделия проработка подготовительных манипуляций перед обработкой изделия на фрезерном станке
- Урок 16. Теория обрабатываемых материалов (часть 1) разбор видов материалов, подлежащих механической обработке
- Урок 17. Теория обрабатываемых материалов (часть 1) разбор видов материалов, подлежащих механической обработке

- Урок 18. Режимы резания расчет и подбор параметров для труднообрабатываемых материалов (титановые сплавы, жаропрочные стали), учет тепловых деформаций
- Урок 19. Компенсация инструмента разбор работы компенсации на длину и радиус инструмента, а также сопутствующих параметров

Промежуточный контроль 2 часа

1. Зачет – устные ответы на вопросы

В результате данного модуля учащиеся научатся настраивать системы координат, компенсировать инструмент и подбирать режимы резания.

Вопросы промежуточного контроля:

- 1. Как установить машинные координаты?
- 2. В каких случаях требуется компенсация инструмента?
- 3. Опишите последовательность калибровки станка
- 4. Как свойства материала влияют на выбор режимов резания?
- 5. Какие факторы учитываются при наладке станка?

Модуль 5. Программирование: G-коды

- Урок 10. G-код (часть 1) разбор базовых G и M кодов, работа с ними, написание простой программы обработки по указанным критериям
- Урок 11. G-код (часть 1) разбор базовых G и M кодов, работа с ними, написание простой программы обработки по указанным критериям
- Урок 11. G-код (часть 3) разбор базовых G и M кодов, работа с ними, написание простой программы обработки по указанным критериям
- Урок 13. G-код (часть 4) программирование сложных контуров с использованием коррекции на радиус инструмента, обработка уступов и карманов с переменной глубиной

Промежуточный контроль 2 часа

1. Зачет – устные ответы на вопросы

В результате данного модуля учащиеся освоят написание и отладку управляющих программ на G-коде для базовых операций.

Вопросы промежуточного контроля:

- 1. Как задать скорость шпинделя в G-коде?
- 2. Какие циклы используются для сверления?
- 3. Опишите процесс проверки программы на коллизии
- 4. Как оптимизировать программу для сокращения времени обработки?
- 5. Какие параметры необходимо контролировать при отладке программы?

Модуль 6. Практические циклы обработки

- Урок 14. Сверление разбор основных циклов сверления, параметры и особенности сверления
- Урок 15. Резьба (метчиком, резьбофрезой) разбор видов и обозначений резьб, нарезание резьбы метчиком, нарезание резьбы резьбофрезой
- Урок 16. Обработка изделия на станке по чертежу разбор и изготовление изделия по чертежу

Промежуточный контроль 2 часа

1. Зачет – устные ответы на вопросы

В результате данного модуля учащиеся получат узнают навыки выполнения сверлильных, резьбонарезных и фрезерных операций.

Вопросы промежуточного контроля:

- 1. Как выбрать параметры для сверления глухих отверстий?
- 2. Чем отличается нарезание резьбы метчиком и резьбофрезой?
- 3. Опишите контроль качества резьбового соединения
- 4. Как определить оптимальную скорость резания при сверлении?
- 5. Какие факторы влияют на точность расположения отверстий?

Модуль 7. Работа со стойками Siemens/Fanuc/Haas

- Урок 17. Обзор функционала стоек поверхностный разбор общего функционала стойки Siemens
 - Урок 18. Работа с функциями (часть 1) разбор функций 1
 - Урок 19. Работа с функциями (часть 1) разбор функций 1
- Урок 30. Работа с функциями (часть 3) настройка и использование макросов для типовых операций, создание пользовательских циклов обработки
- Урок 31. Операции программирования и черчение разбор основных операций для программирования обработки, разбор черчения на конкретных примерах
- Урок 31. Разбор готовых УП. Внесение правок разбор готовых примеров программ Siemens, внесение правок в УП
- Урок 33. Создание собственной УП создание собственной программы обработки изделия по чертежу, разбор логики обработки

Промежуточный контроль 2 часа

1. Зачет – устные ответы на вопросы

В результате данного модуля учащиеся изучат особенности программирования на промышленных системах ЧПУ (Fanuc, Siemens, Haas).

Вопросы промежуточного контроля:

- 1. Как ввести коррекцию в системе Fanuc?
- 2. Какие функции Siemens упрощают программирование?
- 3. Опишите алгоритм поиска ошибок в УП
- 4. Чем отличается интерфейс Haas от систем Fanuc?
- 5. Какие параметры необходимо проверять перед запуском новой программы?

Модуль 8. Охрана труда и трудоустройство

Урок 34. Общие вопросы охраны труда и техника безопасности - разбор конкретных случаев производственного травматизма при работе на фрезерных станках, меры их предотвращения

Урок 35. Подготовка резюме – помощь в подготовке резюме

Урок 36. Трудоустройство. Советы и рекомендации - помощь в выборе стратегии трудоустройстве, советы и рекомендации, помощь в поиске работодателей, отбор соискателей

Промежуточный контроль 2 часа

1. Зачет – устные ответы на вопросы

В результате данного модуля учащиеся подготовятся к трудоустройству, научатся составлять профессиональное резюме и проходить собеседования.

Вопросы промежуточного контроля:

- 1. Какие ключевые компетенции следует указать в резюме оператора ЧПУ?
- 2. Как подготовиться к техническому собеседованию на производстве?
- 3. Назовите основные направления профессионального развития оператора ЧПУ
- 4. Каков порядок действий при аварийной остановке оборудования?
- 5. Какие опасные производственные факторы присутствуют при работе на станках с ЧПУ?
- 6. Какая ответственность предусмотрена за нарушение правил охраны труда?

Практическая часть

Задание для практики: выберете правильный вариант ответа.

- 1. Для чего в начале программы находятся код начала программы и номер программы? Варианты ответов:
 - Чтобы СЧПУ могла начать работу программы обработки
 - Чтобы оператор мог различить программы
 - Чтобы СЧПУ могла отделить в памяти одну программу от другой
- 2. В чем преимущество модальных G кодов перед немодальными?

Варианты ответов:

- Модальные коды действуют только в том кадре в котором находятся
- Модальные коды действуют бесконечно долго, пока их не отменят другим кодом
- Немодальные коды действуют бесконечно долго, пока их не отменят другим кодом
- 3. Могут ли два модальных кода из одной функциональной группы быть активны в одно и то же время?

Варианты ответов:

- нет
- иногда
- ла
- 4. Для чего применяется ускоренное перемещение?

Варианты ответов:

- Для быстрого отвода инструмента
- Для быстрого перемещения инструмента к позиции обработки или безопасной позиции
- Для быстрого выполнения обработки
- 5. Зачем нужен зазор между поверхностью и точкой, в которую перемещается инструмент с помощью кода G00?

Варианты ответов:

- Во избежание неверного позиционирования
- Для перехода в рабочий режим обработки
- Во избежание столкновения инструмента с заготовкой
- 6. В чем разница между G01 и G00?

Варианты ответов:

- При действии кода G01 инструмент перемещается с заданной скоростью при которой возможна обработка материала
- При действии кода G01 инструмент перемещается с заданной скоростью при которой не возможна обработка материала
- При действии кода G00 инструмент перемещается с заданной скоростью при которой возможна обработка материала
- 7. В чем разница между G02 и G03?

Варианты ответов:

- G02 круговая интерполяция на ускоренной подаче и G03 круговая интерполяция на рабочей подаче
- G02 круговая интерполяция против часовой стрелки и G03 круговая интерполяция по часовой стрелке
- G02 круговая интерполяция по часовой стрелке и G03 круговая интерполяция против часовой стрелки
- 8. Для чего в кадре круговой интерполяции указывают I, J, K слова данных? Варианты ответов:
 - Задаются относительные расстояния от начальной точки дуги до ее центра
 - Для задания координат конечной точки дуги
 - Для задания координат центра дуги
- 9. При помощи каких кодов выполняется останов управляющей программы? Варианты ответов:
 - M02 и M30
 - M05
 - M00 и M01
- 10. С помощью каких кодов происходит управление подачей СОЖ?

Варианты ответов:

- M07,M08,M09
- M06,M07,M08
- M06,M07

Итоговая форма контроля — квалификационный экзамен, состоящий из теоретического задания в форме тестирования и выполнения практической квалификационной работы на подтверждение уровня квалификации (разряда).

Оценивается содержание ответа на вопрос и понимание материала обучения в целом. Время проведения – 4 час.

По окончании обучения выпускникам выдается свидетельство установленного образца о присвоении профессии "Оператор станков с программным управлением" 1 разряда, соответствующее требованиям профессионального стандарта и ЕТКС.

6. МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ

Основная литература:

- 1. Долматовский Г.Д. "Программирование обработки на станках с ЧПУ". М.: Машиностроение, 2019. 416 с.
- 2. Ганзен Л.Н. "Станки с числовым программным управлением". М.: Академия, 2010. 368 с.
- 3. Тайц А.А. "Autodesk Fusion 360 для машиностроителей". СПб.: БХВ-Петербург, 2011. 351 с.
- 4. Чернов Н.Н. "Металлорежущие станки". М.: Машиностроение, 1988. 411 с.
- 5. Заплатин В.Н. "Материаловедение и технология металлов". М.: Академия, 2019. 310 с.
- 6. Прошин В.М. "Электротехника". М.: Академия, 2017. 310 с.

Дополнительная литература:

- 1. Черепахин А.А. "Материаловедение". М.: КноРус, 2017. 198 с.
- 2. Хромоин П.К. "Электротехнические измерения". М.: Форум-ИНФРА-М, 2010. 156 с.
- 3. Бодров А.Н. "Технология машиностроения". М.: Форум, 2018. 431 с.
- 4. Схиртладзе А.Г. "Режущий инструмент". М.: Высшая школа, 2016. 368 с.

Основные понятия

Программа профессионального обучения представляет собой комплекс основных характеристик образования (объем, содержание, планируемые результаты), организационно-педагогических условий и форм аттестации, который представлен в виде учебного плана, календарного учебного графика, курсов, модулей, а также оценочных и методических материалов (ФЗ № 173, ст. 1 п. 9).

Электронное обучение — организация образовательной деятельности с применением содержащееся в базах данных и используемой при реализации образовательных программ информации и обеспечивающих ее обработку информационных технологий, технических средств, а также информационно-телекоммуникационных сетей, обеспечивающих передачу по линиям связи указанной информации, взаимодействие обучающихся и педагогических работников.

Под дистанционными образовательными технологиями понимаются образовательные технологии, реализуемые в основном с применением информационно- телекоммуникационных сетей при опосредованном (на расстоянии) взаимодействии обучающихся и педагогических работников (ФЗ № 173, ст.16, п.1). Дистанционными образовательными технологиями являются образовательные технологии, реализуемые в основном с применением информационнотелекоммуникационных сетей при опосредованном (на расстоянии) взаимодействии обучающихся и педагогических работников.

Педагогическим работникам образовательной организации при реализации программы профессионального обучения с применением электронного обучения и дистанционных образовательных технологий:

- 1. необходимо планировать свою педагогическую деятельность с учетом системы дистанционного обучения, создавать простейшие, нужные для обучающихся, ресурсы и задания.
- 1. выражать свое отношение к работам обучающихся в виде текстовых или аудио-рецензий, устных онлайн-консультаций.
 - 3. проводить промежуточный и итоговый контроль.
 - 4. обеспечивать ведение учета результатов образовательного процесса в электронной форме.
- 5. в соответствии с техническими возможностями организовывать проведение учебных занятий, консультаций, на онлайн портале GetCourse.

Основными элементами организации электронного обучения являются следующие:

- 1. Многоканальность доставки образовательного контента обучающимся с помощью используемых информационно-коммуникационных технологий (ИКТ);
- 1. В качестве средств доставки контента или обеспечения повышения эффективности выступает: информационно-образовательная среда GetCourse, взаимодействие в которой происходит посредством сети Интернет;
- 3. Средства поддержки методической работы педагога при обучении в ИКТ-насыщенной среде (электронная библиотека, медиатека записанных лекций);
 - 4. Дополнительная литература для изучения и закрепления пройденного материала.
- 5. Расширенный набор средств удаленного взаимодействия, обучающегося с преподавателем:
 - онлайн-лекции (прямые эфиры);
 - текстовый материал;
 - электронная почта и чат образовательной среды.
- 6. Средства повышения эффективности оценивания результатов обучения при помощи зачета после прохождения модулей;
- 7. Для учета результатов образовательной деятельности, используется электронная система учета уровня освоения программного материала платформы GetCourse.

Виды занятий:

- онлайн-лекции;
- текстовый материал;
- промежуточная аттестация зачет (устные ответы на вопросы);
- практические задания (тестирование);
- квалификационный экзамен.

7. ОЦЕНКА КАЧЕСТВА ОСВОЕНИЯ ПРОГРАММЫ

- 7.1. Оценка качества освоения программы проводится в отношении соответствия результатов освоения программы заявленным целям и планируемым результатам обучения.
- 7.1. В ходе реализации программы обучающийся выполняет практические задания на производственном оборудовании, а также промежуточный контроль в виде устных ответов на вопросы, оцениваемых преподавателем по системе зачет/незачет.
- 7.3. По окончании реализации программы проводится квалификационный экзамен, состоящий из теоретического задания в форме тестирования и выполнения практической квалификационной работы на подтверждение уровня квалификации (разряда).

7.4. Результаты обучения

- Умение настраивать и обслуживать фрезерные станки с ЧПУ.
- Навыки чтения и корректировки управляющих программ.
- Контроль качества обработки деталей с допустимой погрешностью ± 0.05 мм.
- Соблюдение норм охраны труда и промышленной безопасности.

7.5. Критерии оценки

«Зачтено» - теоретическое содержание урока/программы/модуля освоено полностью, ответы на все предусмотренные программой вопросы даны в исчерпывающем объеме.

«Не зачтено» - теоретическое содержание урока/программы/модуля не освоено, ответы на предусмотренные программой вопросы не даны или содержат грубые ошибки.

7.6. Формы и методы оценки

- 1. Промежуточный контроль зачет в форме устных ответов на вопросы.
- 2. Итоговый контроль в форме квалификационного экзамена, состоящего из теоретического задания в форме тестирования на образовательной платформе и выполнения практической квалификационной работы на подтверждение уровня квалификации (разряда).

С целью оценивания содержания и качества учебного процесса, а также отдельных преподавателей со стороны обучающихся проводится анкетирование, получение отзывов и др.

7.7. Оценочные материалы

Вопросы к зачету:

Зачет – Модуль 1

- 1. В чем основные отличия фрезерной и токарной обработки?
- 2. Какие факторы влияют на выбор метода обработки детали?
- 3. Опишите принцип работы одной из систем ЧПУ (на выбор).
- 4. Составьте технологическую последовательность обработки простой детали.

Зачет – Модуль 1

- 1. Как определить критичные допуски на чертеже?
- 2. Какие параметры влияют на выбор скорости резания?
- 3. Опишите алгоритм составления "дорожной карты" обработки
- 4. Как проверить комплектность технической документации?
- 5. Какие факторы учитываются при разработке технологического маршрута?

Зачет – Модуль 3

- 1. Как выбрать фрезу для обработки алюминия?
- 2. Какие факторы влияют на надежность крепления заготовки?
- 3. Опишите методику контроля износа инструмента
- 4. В чем преимущества гидравлических патронов перед механическими?
- 5. Как подобрать мерительный инструмент для контроля сложных поверхностей?

Зачет - Модуль 4

- 1. Как установить машинные координаты?
- 2. В каких случаях требуется компенсация инструмента?
- 3. Опишите последовательность калибровки станка
- 4. Как свойства материала влияют на выбор режимов резания?
- 5. Какие факторы учитываются при наладке станка?

Зачет – Модуль 5

- 1. Как задать скорость шпинделя в G-коде?
- 2. Какие циклы используются для сверления?
- 3. Опишите процесс проверки программы на коллизии
- 4. Как оптимизировать программу для сокращения времени обработки?
- 5. Какие параметры необходимо контролировать при отладке программы?

Зачет – Модуль 6

- 1. Как выбрать параметры для сверления глухих отверстий?
- 2. Чем отличается нарезание резьбы метчиком и резьбофрезой?
- 3. Опишите контроль качества резьбового соединения
- 4. Как определить оптимальную скорость резания при сверлении?
- 5. Какие факторы влияют на точность расположения отверстий?

Зачет - Модуль 7

- 1. Как ввести коррекцию в системе Fanuc?
- 2. Какие функции Siemens упрощают программирование?
- 3. Опишите алгоритм поиска ошибок в УП
- 4. Чем отличается интерфейс Haas от систем Fanuc?
- 5. Какие параметры необходимо проверять перед запуском новой программы?

Зачет - Модуль 8

- 1. Какие ключевые компетенции следует указать в резюме оператора ЧПУ?
- 2. Как подготовиться к техническому собеседованию на производстве?
- 3. Назовите основные направления профессионального развития оператора ЧПУ
- 4. Каков порядок действий при аварийной остановке оборудования?
- 5. Какие опасные производственные факторы присутствуют при работе на станках с ЧПУ?
- 6. Какая ответственность предусмотрена за нарушение правил охраны труда?

Теоретическое задание на квалификационном экзамене:

Задание: выберете правильный вариант ответа.

- 1. Квалитет это?
- А) Интервал размеров, изменяющихся по определенной зависимости
- Б) Совокупность допусков, соответствующих одинаковой степени точности для всех номинальных размеров в заданном интервале
- В) Перечень размеров, имеющих одинаковую величину допуска
- 2. Для чего используют цикл сверления с периодическим выводом инструмента?
- А) Для сверления глубоких отверстий более одного диаметра
- Б) Для сверления глубоких отверстий более трех диаметров
- В) Для нарезания резьбы в отверстии
- 3. Как устанавливается нулевая точка инструмента в системе координат станка?
- А) Автоматически при включении станка
- Б) Вручную с помощью пробника или датчика
- В) По координатам предыдущего инструмента
- Г) Через ввод теоретической длины инструмента

 4. Как называется способ программирования, при котором координаты точек отсчитываются от постоянного начала координат? A) Относительным; Б) Независимым; B) Абсолютным. Г) Постоянным;
5. Какая функциональная группа кодов отвечает за перемещение? A) G17, G18, G19; Б) G00, G01, G01, G03; B) G10, G11; Г) G54-G59.
6. Какой инструмент используют для контроля шероховатости?A) ШтангенциркульБ) ПрофилометрB) МикрометрГ) Нутромер
7. Каким вспомогательным кодом программируется конец программы, перевод курсора в начало программы? А) М01; Б) М00; В) М30; Г) М01.
 8. Каким вспомогательным кодом можно остановить вращение шпинделя? A) M03; Б) M04; B) M05; Г) M06.
9. Укажите G коды для автоматической коррекции радиуса инструмента: A) G41, G41, G40 Б) G43, G44, G40 B) G41, G41, G49
 10. Какой код отменяет компенсацию радиуса инструмента? A) G40 Б) G49 B) G80 Г) G18
11. Какая функциональная группа кодов отвечает за работу в дюймовой/метрической системе? A) G17, G18, G19; Б) G00, G01, G01, G03; В) G10, G11; Г) G54-G59.
11. Для обработки каких деталей предназначены фрезерные станки с ЧПУ? А) Тела вращения (валы, втулки) Б) Плоские и фасонные поверхности В) Резьбовые соединения

Г) Тонкостенные трубчатые детали
13. Какой М-код включает вращение шпинделя по часовой стрелке? A) M03 Б) M04 В) M05 Г) M08
14. Как называется способ программирования, при котором координаты точекотсчитываются от предыдущего положения исполнительного органа станка, которое он занимал перед началом перемещения к следующей опорной точке? А) Относительным; Б) Абсолютным; В) Постоянным;
 15. Коды, которые могут действовать бесконечно долго, пока их не отменят другим кодом: A) Модальными; Б) Непостоянными; В) Немодальными; Г) Постоянными.
16. Адрес О указывает системе ЧПУ на? А) Номер инструмента в магазине инструментов Б) Номер управляющей программы В) Номер вызываемой подпрограммы
17. Каким кодом программируется перемещение инструмента на рабочей подаче? A) G01; Б) G00; B) G03; Г) G01.
18. Каким кодом программируется перемещение инструмента по дуге по часовой стрелке? A) G01; Б) G00; B) G03; Г) G01.
19. Каким вспомогательным кодом программируется запрограммированный останов? A) M01; Б) M00; В) M30; Г) M01.
10. Для чего в УП используются комментарии?А) Довести до оператора станка определенную технологическую операциюБ) Задать определенные данные для обработки заготовкиВ) Описать последовательность обработки
11. Какой вспомогательный код предназначен для автоматической смены инструмента?A) M01;Б) M00;

B) M06;					
Γ) M01.					
11. Каким	подготовительнь	ым кодом прогј	раммируется (стандартный	цикл сверления?
A) G80;				_	_
Б) G81;					
B) G81;					
Γ) G83.					

- 13. Что входит в требования техники безопасности при работе на станке?
- А) Использование СИЗ
- Б) Проверка закрепления заготовки
- В) Знание аварийной остановки
- Г) Знание расположения аварийной кнопки
- Д) Все вышеперечисленное
- 14. Какой параметр наиболее важен при чистовой обработке?
- А) Скорость подачи
- Б) Точность позиционирования
- В) Мощность шпинделя
- Г) Размер рабочей зон

8. УСЛОВИЯ РЕАЛИЗАЦИИ ПРОГРАММЫ

8.1. Требования к минимальному материально-техническому обеспечению

Для реализации программы используется следующее обеспечение:

Образовательная платформа ООО «Система Геткурс» https://expertbau.getcourse.ru/

На платформе размещен Электронный курс, включающий в себя Учебные материалы: текстовый материал, лекции, структуру уроков и практических заданий.

Для реализации программы используется:

- 1. Компьютер (ноутбук) AMD Rizen 7 3700 (Операционная система MicroSoft Windows 10 Pro x64, процессор 8-Core Камера и микрофон встроены в данный ноутбук.
 - 1. Профессиональное оборудование для проведения онлайн-лекций (прямых эфиров).

Для прохождения обучения учащимся потребуется: портативный компьютер, ноутбук, мобильный телефон.

8.1. Оснащение баз практик

Реализация программы профессионального обучения предполагает обязательную учебную практику. Практика реализуется на образовательной платформе в формате тестирования.

Тестовые задания соответствуют содержанию профессиональной деятельности и дают возможность обучающемуся проверить свои знания, умения и навыки по всем видам деятельности, предусмотренных программой.

8.2. Оборудование

Перечень учебного оборудования

- Компьютер для программирования

Программное и методическое обеспечение

- KOMПAC-3D v18
- Festo FLUIDSIM 4.2 Pneumatics
- Математическое обеспечение DMG для программирования и обучения Siemens Sinutrain Operate не ниже V4.5 Mill&Turn
- «ПО Mastercam Educational Suite с одним годом технической поддержки»
- Autodesk Inventor Professional 2017

9. ОРГАНИЗАЦИОННО-ПЕДАГОГИЧЕСКИЕ УСЛОВИЯ РЕАЛИЗАЦИИ ПРОГРАММЫ

- 9.1. Для реализации программы привлекаются преподаватели дополнительного профессионального образования, имеющие соответствующее образование по технической направленности.
- 9.1. При приеме на работу по трудовому договору или по иному договору проверяется отсутствие ограничений по занятию образовательной деятельности.